Ventilación y lactato sanguíneo en niños durante una prueba máxima incremental en cicloergómetro

Ivonne Villa Jiménez, María José Aguilar Cordero, Rafael Guisado Barrilao, José Naranjo Orellana, Laura Guerrero Almeida

Resumen


Este estudio analiza la respuesta ventilatoria en 46 niños varones (8,28 ± 1 años) durante una prueba máxima incremental en cicloergómetro y las concentraciones de lactato sanguíneo al final de la prueba. El incremento fue de 10 vatios cada minuto y se inició a 25 vatios. Durante la prueba el aire espirado se recolectó a través de una mascarilla facial y se analizó respiración a respiración. El segundo umbral ventilatorio (VT 2 ) se determinó según los métodos de intercambio de gases.

 

Todos los niños alcanzaron una potencia máxima (P máx ) de 82,4 ± 1,6 W y un consumo pico de oxígeno (VO 2 ) de 44,69 ± 3,01 ml/kg/min. El VT 2 estaba en el 86,5% del VO 2pico . El lactato sanguíneo al final de la prueba fue de 9,65 ± 1,58 mM/l. Las concentraciones de lactato sanguíneo son mucho mayores que las registradas en la mayoría de los estudios previos y no parecen ser diferentes a las observadas en deportistas bien entrenados al final de una prueba similar.

 

La ecuación que obtuvimos de la relación entre producción de dióxido de carbono (VCO 2 ) y ventilación (VE) fue lineal (y = 0,0324x - 0,008; R 2 = 0,999). En comparación con adultos evaluados previamente en nuestro laboratorio (y = 0,0347x + 0,1452; R 2 = 0,9854) fueron prácticamente idénticas. Esto puede ser un argumento válido para considerar que la capacidad de eliminar CO 2 en niños es tan alta como la de los adultos.


Texto completo:

PDF

Referencias


Fellman N, Coudert J. Physiology of muscular exercise in children. Arch Pediatr 1994;1(9):827-40.

Boisseau N, Delamarche P. Metabolic and hormonal responses to exercise in children and adolescents. Sports Med 2000;30(6):405-22.

Danforth W, Lyon J. Glycogenolysis during titanic contraction of isolated mouse muscles in the presence and absence of phosphorylase a. J Biol Chem 1964;238:4047-52.

Eriksson BO, Gollnick PD, Saltin B. Muscle Metabolism and Enzyme Activities after Training in boys 11-13 Years Old. Acta Physiol Scand 1973;87:485-97.

Eriksson BO, Karlsson J, Saltin B. Muscle metabolites during exercise in pubertal boys. Acta Paediat Scand 1971;217:57-63.

Haralambie G. Enzyme activities in skeletal muscle of 13-15 years old adolescents. Bull Europ Physiopath Resp 1982;18:65-74.

Haralambie G, Reinartz H. Human Skeletal Muscle Enolase and Factors Influencing Its Activity. Enzyme 1978;23:404-9.

Ratel S, Bedu M, Hennegrave A, Dore E, Duche P. Effects of age and recovery duration on peak power output during repeated cycling sprints. Int J Sports Med 2002;23(6):397-402.

McMurray RG, Harrell JS, Bangdiwala SI, HU J. Tracking of physical activity and aerobic power from childhood through adolescence. Med Sci Sports Exerc 2003;35(11):1914-22.

Baquet G, Van Praag E, Berthoin S. Endurance training and aerobic fitness in young people. Sports Med 2003;33(15):1127-43.

Massim MM. The role of exercise testing in pediatric cardiology. Arch Cardiovasc Dis 2014;107:319-27.

Wma.net (Internet). France: World Medical Association, Inc; (updated October 2004; cited 2015). Available at: http://www.wma.net/s/index.htm

Skinner J, Mclellan T. The transition from aerobic to anaerobic metabolism. Res Q Exerc Sport 1980;51:234-48.

McNarry MA, Mackintosh KA, Stoedafalke K. Longitudinal investigation of training status and cardiopulmonary responses in pre and early-puberal children. Eur J Appl Physiol 2014;114(8):1573-80.

Tanaka H, Shindo M. Running Velocity at Blood Lactate Threshold of Boys Aged 6-15 Years Compared with Untrained and trained young Males. Int J Sports Med 1985;6:90-4.

Armstrong N, Welsman J, Chia M. Short term power output in relation to growth and maturation. Br J Sports Med 2001;35:118-24.

Gaul CA, Docherty D, Cicchini R. Differences in Anaerobic Performance Between Boys and Men. Int J Sports Med 1995;16(7):51-455.

Dotan R, Ohana S, Bediz C, Falk B. Blood Lactate Disappearance Dynamics in Boys and men Following Exercise of Similar and Dissimilar Peak-lactate Concentrations. Journal of Pediatric Endocrinilogy & Metabolism 2003;16(3):419-29.

Mero A. Blood lactate production and recovery from anaerobic exercise in trained and untrained boys. Eur J Appl Physiol 1988;57:660-6.

Engel F, Härtel S, Wagner MO, Strahler J, Bös K, Sperlich B. Hormonal metabolic and cardiorespiratory responses of young and adult athletes to a single session of high-intensity cycle exercise. Pediatr Exerc Sci 2014;26(4):485-94.

Karlsson J, Diamant B, Saltin B. Muscle Metabolites during Submaximal and Maximal Exercise in Man. Scand J Clin Lab Invest 1971;26:385-94.

Zafeiridis A, Dalamitros A, Dipla K, Manou V, Galanis N, Kellis S. Recovery during high-intensity intermittent anaerobic exercise in boys, teens and men. Med Sci Sports Exerc 2005;37(3):505-12.

Inbar O, Bar-Or O. Anaerobic characteristics in male children and adolescents. Med Sci Sports Exerc 1986;18(3):264-9.

Van Praagh E, Doré E. Short-Term Muscle Power During Growth and Maturation. Sports Med 2002;32(11):701-28.

Martin R, Dore E, Twisk J, Van Praagh E. Longitudinal Changes of Maximal Short-Term Peak Power in Girls and Boys during Growth. Med Sci Sports Exerc 2004;36(3):498-503.

Wasserman K, Stringer WW, Casaburi R, Koike A, Cooper CB. Determination of the anaerobic threshold by gas exchange: biochemical considerations, methodology and physiological effects. Z Kardiol 1994;83(3):1-12.

Beneke R, Heck H, Hebestreit H, Leithäuser RM. Predicting maximal lactate steady state in children and adults. Pediatr Exerc Sci 2009;21(4):493-505.

Singer D. Phylogeny of Mammalian metabolism. Anasthesiol Intensivmed Notfallmed Schmerzther 2002;37(8):441-60.

Guerrero Almeida L, Naranjo Orellana J, Carranza Márquez MD. Gender Influence on ventilatory efficiency during exercise in young children. J Sports Sci 2008;26(13):1455-7.

Brown SJ, Raman A, Schlader Z, Stannard SR. Ventilatory efficiency in juvenile elite cyclists. J Sci Med Sport 2013;16(3):266-70.

Naranjo J, Centeno RA, Beaus M. El flujo inspiratorio como factor determinante de la ventilación durante el ejercicio. Archivos de Medicina del Deporte 2000;79:395-400.

Carpio C, Santiago A, García de Lorenzo A, Álvarez-Sala R. Función pulmonar y obesidad. Nutr Hosp 2014;30:1054-62.

Wirth A, Trager E, Scheele K, Mayer D, Diehm K, Reischle K, et al. Cardiopulmonary Adjustment and Metabolic Response to Maximal and Submaximal Physical Exercise of Boys and Girls at Different Stages of Maturity. Eur J Appl Physiol 1978;39:229-40.

Bailey RC, Olson J, Pepper SB, Porszasz J, Barstow TJ, Cooper DM. The level and tempo of children ́s physical activities: an observational study. Med Sci Sports Exerc 1995;27:1033-41.

Beneke R1, Hütler M, Leithäuser RM. Anaerobic performance and metabolism in boys and male adolescents. Eur J Appl Physiol 2007;101(6):671-7.

Beneke R, Hutler M, Jung M, Leithauser RM. Modeling the blood lactate kinetics at maximal short-term exercise conditions in children, adolescents and adults. J Appl Physiol 2005;99(2):499-504.

Ascuitto RJ, Ross-Asscuitto NT. Substrate metabolism in the developing heart. Semin Perinatol 1996;20(6):542-63.

Magnusson AL, Powell T, Wennergren M, Jansson T. Glucose metabolism in the human preterm and term placenta of IUGR fetuses. Placenta 2004;25(4):337-46.

Aguilar Cordero MJ, Sánchez López AM, Mur Villar N, Hermoso Rodríguez E, Latorre García J. Effect of nutrition on growth and neurodevelopment in the preterm infant: a systematic review. Nutr Hosp 2014;31(2):716-29.

Toubekis AG, Tokmakidis SP. Metabolic responses at various intensities relative to critical swimming velocity. J Strength Cond Res 2013;27(6):1731-41.

Beneke R1, Hütler M, Leithäuser RM. Carbohydrate and fat metabolism related to blood lactate in boys and male adolescents. Eur J Appl Physiol 2009;105(2):257-63.




DOI: http://dx.doi.org/10.20960/nh.132

Enlaces refback

  • No hay ningún enlace refback.